八年级上册数学第一单元知识点

网上有关“八年级上册数学第一单元知识点”话题很是火热,小编也是针对八年级上册数学第一单元知识点寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

知识改变命运,知识是人类进步的阶梯,知识是智慧的源泉,知识可以使人明智,陶冶人们的灵魂。下面我给大家分享一些 八年级 上册数学第一单元知识点,希望能够帮助大家,欢迎阅读!

八年级上册数学第一单元知识1

全等三角形

1.全等三角形概念 能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角。一个三角形经过平移、翻折、旋转可以得到它的全等形。

2、全等三角形的表示全等用符号“≌”表示,读作“全等于”。如△ABC≌△DEF,读作“三角形ABC全等于三角形DEF”。注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。

3、全等三角形有哪些性质

(1)全等三角形的对应边相等、对应角相等。

(2)全等三角形的周长相等、面积相等。

(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

4、学习全等三角形应注意以下几个问题:

(1)要正确区分“对应边”与“对边”,“对应角”与 “对角”的不同含义;

(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;

(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;

(4)时刻注意图形中的隐含条件,如 “公共角” 、“公共边”、“对顶角”

5、全等三角形的判定 边边边:三边对应相等的两个三角形全等(可简写成“SSS”) 。边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)。角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)。角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)。直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理),有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)。

6、全等变换 只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换。全等变换包括一下三种:

(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。

(2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。

(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。证明两个三角形全等的基本思路:一般来讲,应根据题设并结合图形,先确定两个三角形已知相等的边或角,然后按照判定公理或定理,寻找并证明还缺少的条件,其基本思路是:

a.有两边对应相等,找夹角对应相等,或第三边对应相等.前者利用SAS判定,后者利用SSS判定.

b.有两角对应相等,找夹边对应相等,或任一等角的对边对应相等,前者利用ASA判定,后者利用AAS判定。

c.有一边和该边的对角对应相等,找另一角对应相等,利用AAS判定。

d.有一边和该边的邻角对应相等,找夹等角的另一边对应相等,或另一角对应相等,前者利用SAS判定,后者利用AAS判定。

八年级上册数学第一单元知识2

角的平分线1、角平分线:把一个角平均分为两个相同的角的射线叫该角的平分线;

2、角平分线的性质定理:角平分线上的点到角的两边的距离相等:①平分线上的点;②点到边的距离;

3、角平分线的判定定理:角的内部到角的两边的距离相等的点在角平分线上

4、 方法 规律

(1)有角平分线,通常向角两边引垂线。

(2)证明点在角的平分线上,关键是要证明这个点到角两边的距离相等,即证明线段相等。常用方法有:使用全等三角形,角平分线的性质和利用面积相等,但特别要注意点到角两边的距离。

(3)注意:证题时可直接应用角平分线性质定理和判定定理,不必去找全等三角形。

怎样学好初中数学

1、课后分析看例题

课堂上例题弄懂了,并不说明你具备了解题能力和知识迁移能力。课后还需要从一个新的角度重新审视、分析例题。由于新的知识的掌握、知识面的扩展以及老师的引导、点拨,再看例题时则对难点有了不同的认识,进入了更高的层次。对题中基础知识的运用,分析、推理方法的选择都会有更深的理解。如果课后不看例题思维就会停留在一个浅层次,无法完成由浅入深,由表及里的转化过程。 ?

2、作业推理识例题

做练习是运用知识解决问题提高能力的最重要最有效的方法,也是学好数学的关键。做作业时首先要识别例题,即这道题属于本章节所讲例题的哪一类型;其次要回忆上课老师是如何解题的,再分析有几种解题方法,最后明确哪一种方法最简便。如果识记不清或对以前学过的例题产生了遗忘,要不惜时间去翻阅、分析、记忆。

八年级上册数学第一单元知识点相关 文章 :

★ 人教版八年级数学上册知识点总结

★ 八年级数学上册知识点归纳

★ 初二数学上册知识点总结

★ 初二数学上册知识点

★ 八年级上册数学书知识点

★ 初二数学知识点归纳上册人教版

★ 数学八年级上册知识点整理

★ 八年级上册数学的知识点归纳

★ 数学八年级上册知识点

★ 初二物理第一单元知识点大全

人教版八年级上册数学知识点归纳

失败乃成功之母,重复是学习之母。学习,需要不断的重复重复,重复学过的知识,加深印象,其实任何科目的 学习 方法 都是不断重复学习。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。

八年级上册数学知识点

1、全等三角形的对应边、对应角相等

2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

4、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

5、边边边公理(SSS)有三边对应相等的两个三角形全等

6、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

7、定理1在角的平分线上的点到这个角的两边的距离相等

8、定理2到一个角的两边的距离相同的点,在这个角的平分线上

9、角的平分线是到角的两边距离相等的所有点的集合

10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

11、推论1等腰三角形顶角的平分线平分底边并且垂直于底边

12、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

13、推论3等边三角形的各角都相等,并且每一个角都等于60°

14、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

15、推论1三个角都相等的三角形是等边三角形

16、推论2有一个角等于60°的等腰三角形是等边三角形

17、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

18、直角三角形斜边上的中线等于斜边上的一半

19、定理线段垂直平分线上的点和这条线段两个端点的距离相等

20、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

21、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

22、定理1关于某条直线对称的两个图形是全等形

23、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

24、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

25、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

26、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

27、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形

28、定理四边形的内角和等于360°

29、四边形的外角和等于360°

八年级数学知识点 总结

函数及其相关概念

1、变量与常量

在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。

2、函数解析式

用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点

(1)解析法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法

用图像表示函数关系的方法叫做图像法。

4、由函数解析式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来

初二数学 学习 经验 心得

1学好初中数学课前要预习

初中生想要学好数学,那么就要利用课前的时间将课上老师要讲的内容预习一下。初中数学课前的预习是要明白老师在课上大致所讲的内容,这样有利于和方便初中生整理知识结构。

初中生 课前预习 数学还能够知道自己有哪些不明白的知识点,这样在课上就会集中注意力去听,不会出现溜号和走神的情况。同时课前预习还可以将知识点形成体系,可以帮助初中生建立完整的知识结构。

2学习初中数学课上是关键

初中生想要学好学生,在课上就是一个字:跟。上初中数学课时跟住老师,老师讲到哪里一定要跟上,仔细看老师的板书,随时知道老师讲的是哪里,涉及到的知识点是什么。有的初中生喜欢记笔记,在这里提醒大家,初中数学课上的时候尽量不要记笔记。

你的主要目的是跟着老师,而不是一味的记笔记,即使有不会的地方也要快速简短的记下来,可以在课后完善。跟上老师的思维是最重要的,这就意味着你明白了老师的分析和解题过程。

3课后可以适当做一些初中数学基础题

在每学完一课后,初中生可以在课后做一些初中数学的基础题型,在做这样的题时,建议大家是,不要出现错误的情况,做完题后要学会思考和整理。当你的初中数学基础题没问题的时候,就可以做一些有点难度的提升题了,如果做不出来可以根据解析看题。

但是记住千万不要大量的做这类题,初中生偶尔做一次有难度的题还是对数学的学习有帮助的,但是如果将重点放在这上面,没有什么好处。同时要学会整理,将自己错题归纳并总结,

数学是由简单明了的事项一步一步地发展而来,所以,只要学习数学的人老老实实地、一步一步地去理解,并同时记住其要点,以备以后之需用,就一定能理解其全部内容.就是说,若理解了第一步,就必然能理解第二步,理解了第一步、第二步,就必然能理解第三步.这好比梯子的阶级,在登梯子时,一级一级地往上登,无论多小的人,只要他的腿长足以跨过一级阶梯,就一定能从第一级登上第二级,从第二级登上第三级、第四级,…….这时,只不过是反复地做同一件事,故不管谁都应该会做.

八年级数学重点知识点总结相关 文章 :

★ 人教版八年级数学上册知识点总结

★ 八年级数学知识点整理归纳

★ 八年级数学知识点归纳总结

★ 初二数学上册知识点总结

★ 八年级下册数学知识点整理

★ 八年级数学知识点总结

★ 八年级数学知识点归纳

★ 八年级数学上知识点总结

★ 八年级数学上知识点归纳

★ 初二数学重点知识归纳整理

 对数学的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。归纳整理了人教版八年级数学上册知识点,欢迎阅读,希望对你复习有帮助。

  人教版八年级数学上册知识点总结

  第十一章 三角形

 一、知识框架:

 二、知识概念:

 1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

 2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

 3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

 4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

 5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

 6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

 7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

 8.多边形的内角:多边形相邻两边组成的角叫做它的内角。

 9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

 10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

 11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

 12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做多边形覆盖平面(平面镶嵌)。镶嵌的条件:当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个时,就能拼成一个平面图形。

 13.公式与性质:

 ⑴三角形的内角和:三角形的内角和为180°

 ⑵三角形外角的性质:

 性质1:三角形的一个外角等于和它不相邻的两个内角的和。

 性质2:三角形的一个外角大于任何一个和它不相邻的内角。

 ⑶多边形内角和公式:边形的内角和等于·180°

 ⑷多边形的外角和:多边形的外角和为360°。

 ⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形.②边形共有条对角线。

  第十二章 全等三角形

 一、知识框架:

 二、知识概念:

 1.基本定义:

 ⑴全等形:能够完全重合的两个图形叫做全等形。

 ⑵全等三角形:能够完全重合的两个三角形叫做全等三角形。

 ⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点。

 ⑷对应边:全等三角形中互相重合的边叫做对应边。

 ⑸对应角:全等三角形中互相重合的角叫做对应角。

 2.基本性质:

 ⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性。

 ⑵全等三角形的性质:全等三角形的对应边相等,对应角相等。

 3.全等三角形的判定定理:

 ⑴边边边():三边对应相等的两个三角形全等。

 ⑵边角边():两边和它们的夹角对应相等的两个三角形全等。

 ⑶角边角():两角和它们的夹边对应相等的两个三角形全等。

 ⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等。

 ⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等。

 4.角平分线:

 ⑴画法:

 ⑵性质定理:角平分线上的点到角的两边的距离相等。

 ⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上。

 5.证明的基本方法:

 ⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)

 ⑵根据题意,画出图形,并用数字符号表示已知和求证。

 ⑶经过分析,找出由已知推出求证的途径,写出证明过程。

  第十三章 轴对称

 一、知识框架:

 二、知识概念:

 1.基本概念:

 ⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。

 ⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。

 ⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

 ⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。

 ⑸等边三角形:三条边都相等的三角形叫做等边三角形。

 2.基本性质:

 ⑴对称的性质:

 ①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线。

 ②对称的图形都全等。

 ⑵线段垂直平分线的性质:

 ①线段垂直平分线上的点与这条线段两个端点的距离相等。

 ②与一条线段两个端点距离相等的点在这条线段的垂直平分线上。

 ⑶关于坐标轴对称的点的坐标性质

 。

 ⑷等腰三角形的性质:

 ①等腰三角形两腰相等。

 ②等腰三角形两底角相等(等边对等角)。

 ③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合。

 ④等腰三角形是轴对称图形,对称轴是三线合一(1条)。

 ⑸等边三角形的性质:

 ①等边三角形三边都相等。

 ②等边三角形三个内角都相等,都等于60°

 ③等边三角形每条边上都存在三线合一。

 ④等边三角形是轴对称图形,对称轴是三线合一(3条)。

 3.基本判定:

 ⑴等腰三角形的判定:

 ①有两条边相等的三角形是等腰三角形。

 ②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。

 ⑵等边三角形的判定:

 ①三条边都相等的三角形是等边三角形。

 ②三个角都相等的三角形是等边三角形。

 ③有一个角是60°的等腰三角形是等边三角形。

 4.基本方法:

 ⑴做已知直线的垂线:

 ⑵做已知线段的垂直平分线:

 ⑶作对称轴:连接两个对应点,作所连线段的垂直平分线。

 ⑷作已知图形关于某直线的对称图形:

 ⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短。

  第十四章 整式的乘除与分解因式

 一、知识框架:

  第十五章 分式

 一、知识框架 :

 ●●●END●●●

关于“八年级上册数学第一单元知识点”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

本文来自作者[heshimuye]投稿,不代表庄赫号立场,如若转载,请注明出处:https://heshimuye.cn/wiki/202508-15773.html

(1)
heshimuye的头像heshimuye签约作者

文章推荐

发表回复

作者才能评论

评论列表(3条)

  • heshimuye的头像
    heshimuye 2025年08月11日

    我是庄赫号的签约作者“heshimuye”

  • heshimuye
    heshimuye 2025年08月11日

    本文概览:网上有关“八年级上册数学第一单元知识点”话题很是火热,小编也是针对八年级上册数学第一单元知识点寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助...

  • heshimuye
    用户081104 2025年08月11日

    文章不错《八年级上册数学第一单元知识点》内容很有帮助